Agenda

Interaction of elm Radiation With Matter
Task: Explain T(t)
Model radiative forcings due to specific components (CO,, CH,,...)
Absorption of atmospheric gas composition as function f(v, 1)

o Atmospheric absorption of solar radiation - high temps (energies)
o Atmospheric absorption of terrestrial radiation—> infrared

Strategy: Macroscopic absorption - atomic cross section -2

quantum degrees of freedom - energy spectrum - specific
molecular absorption cross section for elm. radiation



The Electromagnetic Spectrum Size Comparisons

Wavelength
(meters)

Microwave! Infrared

103 102 < 105  5x10% 10°8 q 1010 1012

Buildings Humans HoneyBee Pinpoint Protozoans Molecules  Atoms  Atomic Nuclei

Frequency w
(Hz)

104 108 1012 1013 1016 1018 1020

Temperature

of bodies emitting
the wavelength

(K)

T/K 10° 102 104 107 1010




Energy Transfer by Photons

Moving electric charges in
broadcast antenna emit
electromagnetic radiation fields
Ji characteristic (frequency, wave
| length) of the electric currents

Electromagnetic waves transfer quanta (photons)
which can be absorbed by electrons in a receiver antenna, causing

them to move in synch with the emitter.



Absorption of elm Radiation: Beer-Lambert Law

Absorption of individual photons by individual atoms/molecules
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Absorption of elm Radiation: Beer-Lambert Law

Absorption of individual photons by individual atoms/molecules
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Absorption of elm Radiation: Beer-Lambert Law

Absorption of individual photons by individual atoms/molecules
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— Transmittance : — Log,, [I ]

H-x=e-C-X Units of 4 and & depend on unit of c.

P

Specific for absorber material, depends on internal structure, electric
dipole moment. Otherwise, u # 0 only for ionized ideal gas.




Emission and Absorption Mechanism for Photons

Unbound electric charges such as electrons in a hot body
“blackbody”) of ionized gas (e.g., Sun) emit and absorb

continuous electromagnetic spectra.
Black bodies>thermal spectrum

Bound electric charges (e.g., electrons in atoms, molecules)
emit and absorb discrete (“line”) energy (wavelength) spectra.
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bound systems: Dicerite

Absorption or emission of light (bound) ooto”

occurs in transitions between <0 p@é\g\) (\N)QO(
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discrete energy levels. < 0o

Characteristic spacing - spectr. ID Energy Level

Ground State

JAE[ = hv =hc/L Absorption Emission

h = 6.62606957 X 103*m2kg/s
Planck’s constant




Energy Spectra and Transfer Through Radiation

Wave length spectrum for thermal equilibrium

— thermal spectrum.
| B &)  cnited and/or

Wave length spectrum for atomic transitions

Wave Length A (nm) >

Internal atomic / molecular energies are quantized
Transition between levels:i — f

AE; =E; —E =hvy =hay, =hc/Z

Planck's constant h =6.626-10"J -s
hi=h/2z,c=0.2998m/ns speed of light

Continuous

absorbed by
charged particles
in random motion

Charged/Polarized Particles

Energy Levels of Na and H (1-electron atoms)
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1eV =1.602176 53(14) x 10-1° ] (Joule)
v:2.417 989 40(21) x 1014 Hz
Energy related _ _1
spectroscopic V. 8 065.544 45(69) cm
observables A:1 239.841 91(11) nm
T: 11 604.505(20) K (Kelvin)



Molecular Emission/Absorption Spectroscopy

Intrinsic Harmonic Excitation Modes
/ Ce, T T \./?\v
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Normal degrees of | i e
freedom of motion of a | ® | - e |
3-atomic molecule: 4 7
1) translational as a whole, & ~ @
2) rotational (diff. axes),
3) vibrational (diff. modes), SUEO—.

4) electronic.
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IR absorption if molecule

has electric dipole moment
E =Eyus (V) +E(J;)+Eyip (N)+E, ()
Translation energy E;.,s has continuous “thermal”

spectrum, generated by multiple collisions.
Mean energy about kT= 400 cm (T =300 K), infrared (IR)

Can absorb or emit any energy amount (E conserved).
Quantized degrees of freedom absorb/emit discrete energy
packages

ho,_ = J_r(Ef - Ei)—> rot —vib spectrum

Rotational energy E,.; is quantized (line spectrum), typical
Energies= (1-500) cm-! (far-IR to microwave)

Vibrational energy E,;, is quantized (line spectrum):
energy of vibrating nuclei about their equilibrium
positions; E ~ (500 to 10%4) cm! (near-IR to far-IR)

Electronic energy E is quantized (line spectrum), typical
energies (104-10°) cm-1 (UV and visible).



V¢

AEn n=4
ha)04 n=3
n=2
ha,,
n=1
h%‘ 1 )
n=0

Spectroscopy of CO,

Molecule is electrically polarized : dipole moment g -d
Elm radiation : Z (z,t) = %, (z)-e"”%;
frequency @ = 2rc/A, wave length A
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Energy Transfer via Collisional Relaxation
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Internally rot-vib excited di/poly-atomic molecules in atmosphere
suffer multiple collisions with other particles in random (thermal)
motion, which act as a “viscous heat bath.”

(E). :%k-T (i=12.. 1)

. . 1
3D translational motion (E)_=(E,)_ +<Ey>eq +(E,),, =3- kT

Energy is transferred back and forth between all (f) degrees of
freedom, until equi-partition

Consequently: for damped oscillation of mass m on a spring

(t) =x(t=0)-cos(@ -t) w=\/c/_m

Damping coefficient y — x(t) = x(t=0)-e 7" -cos(@ -t) > (E(t))

Undamped : X

free

Energy E(t) ~ (X(t))” transfer to bath particles and back until
equilibrium is attained (bath heats up).

d :

—(E)=—|(E(t))-E , With Fast

dt< > |:< ( )> 0]/Trelax wi Trelax oc Tcoll relaxation/
collision time 7, = function (density, T) attainment

f
___Mean free path A (5:10°%m) | m 109 gquilibrium
“!' " mean thermal speed | p/Torr )\ 8zkT

Internal molecular energy dissipated quickly and heats surrounding gas @ equilibrium I !



Selective Filter Effect of Atmosphere

s°|ar-enerQY'absorbing Greenhouse gases N>
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78.08 Mean composition
20.95 :
L of dry air and
0.934 absorption spectra
182210 = for GHG.
5.24x 10~ 0% < [HZO] < 0.4% ,
114210 ¢ _
87x10-% GHG concentrations
5.0%107% rising during past
>2.0x 10~ centu ry.
»5.0x107" B pdapted f
P pted from F.W. Taylor,
~4.0x10 ECP.

Scattered or absorbed
radiation energy is not
available for warming Earth
surface. > Tg < 255K

Radiation within the
“Atmospheric Window"” A\ is
not absorbed by atmosphere
- emitted directly into space.
Specific Greenhouse gases
may absorb in AA and reflect
radiation back to Earth
surface> “warming potential”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6174548/
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